
SML: A New Interface Into
Soar

Douglas Pearson
+ Bob, Jon, Karen, Trevor, Devvan, John

douglas.pearson@threepenny.net

2

Short-Term Problem

• New debugger
– Avoid string parsing
– Use Java for faster tool development
– Dynamic attachment to existing processes
– High performance

• gSKI integration
– Removal of existing command line

• Redux choice to use JESS for rule matcher

3

Long-Term Problem

• Interfacing to Soar has always been hard
– Initially limited to implementation language (LISP/C)
– Extended to Tcl but lead to dependencies on Tcl
– SGIO supported embedded kernels but only for I/O
– gSKI added clean interface to kernel but multiple

languages, debugging and remote I/O
unimplemented.

4

Key Properties of our Solution
• Supports multiple languages (Java, C++, Tcl currently) while

removing Tcl dependency
• Supports uniform interface for I/O (environments) and commands

(debuggers)
• Supports embedding kernel within debugger or environment with

remote connections between them
• Supports multiple clients (environments, tools, debuggers etc.)

connecting to a single kernel
• Supports dynamic connection and disconnection of tools (esp.

debuggers) from a running kernel
• Provides a uniform, high-level, data-driven model for the entire Soar

interface while achieving high performance
• Moves command line support out of the kernel while providing

universal access to it from any client
• Includes a new cleaned up command line interface

• Lots of new capabilities yet in most cases the new interface is
substantially faster than 8.5.2

• No production level changes (except ‘tcl’ -> ‘exec’)

5

Connecting to Soar

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

6

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

C++ Function
Calls

Connecting to Soar
Direct Link to Kernel

Soar 6/7
gSKI
Soar 8.4/8.5

7

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

C++ Function
Calls

Data over Socket

Connecting to Soar
SGIO Style

Code forks between
embedded and remote

Client (environment) unaware
Only I/O

8

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML over Socket

Connecting to Soar
ATE Style?

Primarily I/O but includes
higher level concepts?

Custom code per language?
Proprietary

9

Connecting to Soar
SML Style – Soar Markup Language

Uniform for entire interface

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML
over Socket

or
Function Call

10

Connecting to Soar
SML Style – Soar Markup Language

Internally use socket or function call
Client, Kernel and (99%) SML code all unaware

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

11

Connecting to Soar
SML Style – Soar Markup Language

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

Client SML Kernel SML

12

Connecting to Soar
SML Style – Soar Markup Language

I/O Commands
^input-link
^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

Client SML Kernel SML

gSKI

Command
Line

Other
(I/O

Events)

13

Possibly useful ways to think about
SML

• An XML interface into the kernel
– A data-driven approach rather than function calls

• A remote procedure call protocol for the kernel
– Although it’s not just for remote calls

• A language independent way to access the
kernel

• SOAP/Web Service for the kernel
– Although again not limited to remote access

14

De-Coupling from the Kernel

• Two central tenets for good software design
– High cohesion

• Each class does one thing not several things

– Loosely coupled
• Each class knows as little as possible about the classes they

interact with

• What is good for classes is good for modules

15

SML Makes Systems More Loosely
Coupled to Soar

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

C++ Function
Calls

8.5/gSKI Interface size (# functions which break client if changed and not recompiled) ~= 1000

SML reduces this to 2 (+ about 20 for ElementXML)

Why does this matter?
Supports a larger community building clients – may not have source available

Allows a single client to support multiple different kernel versions because data-driven

By default builds to 2 libraries with no dependencies
So less coupled to Tcl or other stuff

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML
over Socket

or
Function Call

16

SML Example Packets
“Print chunk-1”

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.6.1” id=”657” >
<command name=”print”>

<arg param=”agent”>agent-1</arg>
<arg type=”string” param=”name”>chunk-1</arg>

</command>
</sml>

“Output (O1 ^turn T1) (T1 ^heading 045 ^speed 225)”

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.6.1” id=”1763”>
<command name=”output”>

<arg param=”agent”>agent-1</arg>
<wme action=”add” att=”turn” id=”O1” tag=”7” type=”id” value=”T1”></wme>
<wme action=”add” att=”heading” id=”T1” tag=”6” type=”int” value=”045”></wme>
<wme action=”add” att=”speed” id=”T1” tag=”12” type=”int” value=”225”></wme>

</command>

</sml>

17

Maximizing XML performance
Standard Approach for passing XML

-- Always requires parsing step

Class wme {
 String id ;
 String att ;
 String value ; }

Internal
Representation
(C++/Java/...)

XML String <wme id=”O1” value=”T1”></wme>att=”turn”

XML Parser

ElementXML {
 String tag ;
 List<String> attributes ;
 List<ElementXML> children ; }

XML Object Representation
(DOM)

18

Maximizing XML performance
SML Approach – create DOM representation directly

- only convert to XML string if needed

Class wme {
 String id ;
 String att ;
 String value ; }

Internal
Representation
(C++/Java/...)

XML String

XML Parser

ElementXML {
 String tag ;
 List<String> attributes ;
 List<ElementXML> children ; }

XML Object Representation
(DOM)

XML Object Representation
(DOM)

Speed benefit ~50x if always use socket
Speed benefit ~10x if pass string directly

19

Building an SML Client

• Option A: Just send XML strings to socket
– Format: 4 byte length + XML string
– Not recommended, lose embedded speed and need details on

XML packets but an option

• Option B: Use client SML functions we provide in
– C++
– Java
– Tcl
– more…

20

Creating Kernel and Agents

• Local Kernel
– Kernel* pKernel = CreateKernelInNewThread()

• Generally recommended
– Kernel* pKernel = CreateKernelInCurrentThread()

• Tcl only supports this form (so far)
• Call CheckForIncomingCommands() periodically

• Remote Kernel
– Kernel* pKernel = CreateRemoteConnection(ipAddress, port)

• Pass null for ipAddress => same machine

• Agents
– CreateAgent()
– DestroyAgent()

• Shutdown
– delete pKernel object
– disconnects
– cleans up all memory

21

Local vs Remote Kernels

Client 1

Kernel

Client 2 Client 3 Client 4

CreateKernel
InNewThread()

CreateRemote
Connection()

CreateRemote
Connection()

CreateRemote
Connection()

22

Local vs Remote Kernels

CreateRemote
Connection()

CreateKernel
InNewThread()

CreateRemote
Connection()

CreateRemote
Connection()

Client 2

Kernel

Client 1 Client 3 Client 4

Change one line of code
• Internally different execution paths

– XML objects + local functions vs XML strings + sockets
• To the client, same interface and capabilities
• No special access for debugger

23

Input

• Add structures to input link representation
– Identifier* pInputLink = pAgent->GetInputLink()
– Identifier* pID = pAgent->CreateIdWME(pInputLink, "plane") ;
– StringElement* pWME1 = pAgent->CreateStringWME(pID, "type", "Boeing747") ;

Result: (I1 ^input-link I2) (I2 ^plane P1) (P1 ^type Boeing747)

• Send changes to kernel
– pAgent->Commit() ;
– Actual wmes added during next input phase

• Update or remove in future cycles
– pAgent->Update(pWME1, “Cessa”) ;

• NOTE: init-soar works and comes for free.
– Sends over current input state automatically so you can pick up reasoning

24

Output
• Check for output commands (since last check)

– Based on “command” notion on output link
– E.g. (I1 ^output-link I3) (I3 ^move M1) (M1 ^speed 20)

– pAgent->GetNumberCommands() ;
– Identifier* pCommand = pAgent->GetCommand(i) ;
– string name = pCommand->GetCommandName() ;
– string speed = pCommand->GetParameter(“Speed”) ;
– pCommand->AddStatusComplete() ;

• Same as pAgent->CreateStringWME(pCommand, “status”, “complete”) ;

• But not forced to use this model
– GetCommand() returns Identifier*. Can access substructure directly.
– GetOutputLink() and walk output link directly.
– GetOutputLinkChange() to walk list of WMEs changed

• Call ClearOutputLinkChanges() after reading the output link
– Allows SML to only report changes to the output link.

25

Running Soar

• Run
– Kernel->RunAllAgentsForever()
– Kernel->RunAllAgents(steps, stepSize)
– Agent->RunSelfForever()
– Agent->RunSelf(steps, stepSize)

• Stop
– Kernel->StopAllAgents()
– Agent->StopSelf()

26

Debugging commands
• ExecuteCommandLine(commandLine)

– ExecuteCommandLine(“watch 3”) ;
– ExecuteCommandLine(“print o1”) ;
– ExecuteCommandLine(“excise –all”) ;

• Simple form returns a string
– “set-library-location”
– returns: “Current library location: e:\soarmich\soar-library”

• Alternative form returns XML
– “set-library-location”
<sml doctype="response" id="32" smlversion="1.0 soarversion="8.6.1“ack=“237">

<result>
<arg param="directory" type="string">e:\soarmich\soar-library</arg>

</result>
</sml>
– GetArgValue(“directory”) [smlNames::kParamDirectory]

• Why not implement all as methods in the client interface?
– Just saving work
– Some clients (lots?) will want to embed command line windows
– XML all documented on Wiki (http://winter.eecs.umich.edu/soarwiki/Main_Page)

27

Event Handling

• Register callback handler for an event
pAgent->RegisterForRunEvent(smlEVENT_AFTER_DECISION_CYCLE,

MyRunEventHandler, 0) ;

• Called back when event occurs:
void MyRunEventHandler(smlRunEventId id, void* pUserData, Agent* pAgent,

smlPhase phase) ;

• Supports all gSKI events (plus a few additions)
– Long list

• Events can be handled over remote connections the same as local ones

28

RHS Functions
• Register RHS function

pKernel->AddRhsFunction("test-rhs", &MyRhsFunctionHandler, 0) ;

• Referred to via “exec” in production (just like “tcl”)
sp {apply*user*exec

(state <s> ^operator <o> ^io.output-link)
(<o> ^name move ^space <sp>)
(<sp> ^row <row> ^col <col>)

-->
(^test (exec test-rhs | hello | <row> | world |))}

• Calls RHS function handler
std::string MyRhsFunctionHandler(smlRhsEventId id, void* pUserData, Agent* pAgent, char

const* pFunctionName, char const* pArgument) ;

• “cmd” allows access to command line as built in command set
--> (cmd print <s>)

• Handler can be in any language (e.g. register from Java, handler in Java)
• RHS functions can be handled over remote connections the same as local ones

– If same function registered locally and remote, calls local one

29

Threads

• CreateKernelInNewThread()
– Runs kernel in its own thread
– Means kernel can respond to remote commands (over socket) on its

own
– Otherwise need to call “CheckForIncomingCommands()” periodically

• Also EventThread helps client remain responsive
– Register for an event (e.g. AFTER_DECISION_CYCLE)
– Go to sleep => entire system locks up waiting for this client
– Solution is a thread which receives these events and pushes them

through client callback to get response

• Both just make it easier to build a client
– Neither thread is required – CreateClientInCurrentThread()
– For maximum performance turn them off and handle these issues

yourself

30

SWIG and Language Support
• SWIG

– Automatic generation of Java and Tcl implementations
– Fast to create and maintain
– Custom code added to handle callbacks
– Code looks the same in each language

C++
sml::Kernel* pKernel = Kernel::CreateRemoteConnection(true, null, Kernel::GetDefaultPort()) ;

if (pKernel->HadError())
{

cout << pKernel->GetLastErrorDescription() << endl ;
return false ;

}

Java
sml.Kernel kernel = Kernel.CreateRemoteConnection(true, null, Kernel.GetDefaultPort()) ;

if (kernel.HadError())
{

System.out.println(kernel.GetLastErrorDescription());
return false ;

}

31

Common Environment Control Loop

Asychronous environments
Act as soon as output is sent from an agent

Synchronous environments
Fixed amount of Soar processing before update world

while (!stopped)
• Run(1) (or Run-til-output)
• Collect-output
• Update-state-of-world
• Send-input

Assumes environment triggers run.
Assumes run(1) completes a decision
Assumes user doesn’t issue “stop-soar” (needs to pause/stop environment)

32

Preferred Environment Control
Structure

1. Register for “update world” event (e.g. AFTER_ALL_OUTPUT_PHASES)

2. Handler takes form:
• Collect-output
• Update-state-of-world
• Send-input

3. Run controls
• Kernel::RunAllAgentsForever()
• Kernel::RunAllAgents(1)

As agents run, fire event as reach end of output phases.
Allows run to come from debugger or environment or other tools.
Allows for arbitrary interruption of run commands (e.g. breakpoints/stop-soar).

33

Debugger Performance Comparison

Towers of Hanoi TSI (8.5.2) Java Debugger
(Text)

Java
Debugger
(Tree)

Watch 1
(Run 100)

1.25 secs 0.73 secs 0.75 secs

Watch 5
(Run 100)

59.68 secs 2.14 secs 1.51 secs
0.58 secs (full
filtering)

• Within process faster than 8.5.2 (for the debugger)
• Embedding Soar in environment so remote => local

– Not measured yet, but huge speed up

34

Documentation
• PDFs included in Release

– SML Quick Start Guide
– Moving from SGIO to SML
– Soar XML Interface Specification
– Intro to the Soar Debugger
– How to guide – adding an event to gSKI and SML

• Online on the Wiki
– http://winter.eecs.umich.edu/soarwiki/Main_Page

• Questions, bugs, building something cool, need help?
– soar-sml-list@umich.edu

http://winter.eecs.umich.edu/soarwiki/Main_Page

35

Nuggets

• Supports multiple languages (Java, C++, Tcl currently) while
removing Tcl dependency

• Supports uniform interface for I/O (environments) and commands
(debuggers)

• Supports embedding kernel within debugger or environment with
remote connections between them

• Supports multiple clients (environments, tools, debuggers etc.)
connecting to a single kernel

• Supports dynamic connection and disconnection of tools (esp.
debuggers) from a running kernel

• Provides a uniform, high-level, data-driven model for the entire Soar
interface while achieving high performance

• Moves command line support out of the kernel while providing
universal access to it from any client

• Includes a new cleaned up command line interface

• Lots of new capabilities yet in most cases the new interface is
substantially faster than 8.5.2

36

Nuggets
• Building a command line interface in a client is pretty simple

– Allows embedding console windows into environment (e.g. games)

• Readily supports other solutions
– Other debuggers (e.g. TSI-8.6)
– Other editors (edit-production is generic)

• 8.6.1 will be out by end of June
– Linux and Mac support
– Soar7 mode
– Tcl Eaters
– Java Missionaries and Cannibals
– New environment event model
– Kernel XML generation much faster
– New debugger features (fast tree view, filtering etc.)
– Lots of other bug fixes

• 8.6.1r5 Used for tutorial at the workshop w/o problems
– Tcl Eaters with Java Debugger with C++ Kernel

37

Coal
• Not all commands generate fully structured XML

– Esp. print, but should do so shortly
– Still XML but not as rich as we’d like

• Threading models not completely resolved yet
– Esp. Tcl

• Lots of new code
– There will be some bugs lurking
– Not all combinations fully tested yet
– Interfaces will probably change a bit as everything settles

	SML: A New Interface Into Soar
	Short-Term Problem
	Long-Term Problem
	Key Properties of our Solution
	Connecting to Soar
	Connecting to Soar�Direct Link to Kernel
	Connecting to Soar�SGIO Style
	Connecting to Soar�ATE Style?
	Connecting to Soar�SML Style – Soar Markup Language
	Connecting to Soar�SML Style – Soar Markup Language
	Connecting to Soar�SML Style – Soar Markup Language
	Connecting to Soar�SML Style – Soar Markup Language
	Possibly useful ways to think about SML
	De-Coupling from the Kernel
	SML Makes Systems More Loosely Coupled to Soar
	SML Example Packets
	Maximizing XML performance�
	Maximizing XML performance�
	Building an SML Client
	Creating Kernel and Agents
	Local vs Remote Kernels
	Local vs Remote Kernels
	Input
	Output
	Running Soar
	Debugging commands
	Event Handling
	RHS Functions
	Threads
	SWIG and Language Support
	Common Environment Control Loop
	Preferred Environment Control Structure
	Debugger Performance Comparison
	Documentation
	Nuggets
	Nuggets
	Coal

