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Short-Term Problem

• New debugger
– Avoid string parsing
– Use Java for faster tool development
– Dynamic attachment to existing processes
– High performance

• gSKI integration
– Removal of existing command line

• Redux choice to use JESS for rule matcher
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Long-Term Problem

• Interfacing to Soar has always been hard
– Initially limited to implementation language (LISP/C)
– Extended to Tcl but lead to dependencies on Tcl
– SGIO supported embedded kernels but only for I/O
– gSKI added clean interface to kernel but multiple 

languages, debugging and remote I/O 
unimplemented.
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Key Properties of our Solution
• Supports multiple languages (Java, C++, Tcl currently) while 

removing Tcl dependency
• Supports uniform interface for I/O (environments) and commands 

(debuggers)
• Supports embedding kernel within debugger or environment with 

remote connections between them
• Supports multiple clients (environments, tools, debuggers etc.) 

connecting to a single kernel
• Supports dynamic connection and disconnection of tools (esp. 

debuggers) from a running kernel
• Provides a uniform, high-level, data-driven model for the entire Soar 

interface while achieving high performance
• Moves command line support out of the kernel while providing 

universal access to it from any client
• Includes a new cleaned up command line interface

• Lots of new capabilities yet in most cases the new interface is 
substantially faster than 8.5.2

• No production level changes (except ‘tcl’ -> ‘exec’)
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Connecting to Soar

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel
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I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

C++ Function
Calls

Connecting to Soar
Direct Link to Kernel

Soar 6/7
gSKI
Soar 8.4/8.5
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I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

C++ Function
Calls

Data over Socket

Connecting to Soar
SGIO Style

Code forks between
embedded and remote

Client (environment) unaware
Only I/O
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I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML over Socket

Connecting to Soar
ATE Style?

Primarily I/O but includes
higher level concepts?

Custom code per language?
Proprietary
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Connecting to Soar
SML Style – Soar Markup Language

Uniform for entire interface

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML
over Socket

or
Function Call
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Connecting to Soar
SML Style – Soar Markup Language

Internally use socket or function call
Client, Kernel and (99%) SML code all unaware

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call
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Connecting to Soar
SML Style – Soar Markup Language

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

Client SML Kernel SML
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Connecting to Soar
SML Style – Soar Markup Language

I/O Commands
^input-link
^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

Client SML Kernel SML

gSKI

Command
Line

Other
(I/O

Events)
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Possibly useful ways to think about 
SML

• An XML interface into the kernel 
– A data-driven approach rather than function calls

• A remote procedure call protocol for the kernel
– Although it’s not just for remote calls

• A language independent way to access the 
kernel

• SOAP/Web Service for the kernel
– Although again not limited to remote access
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De-Coupling from the Kernel

• Two central tenets for good software design
– High cohesion

• Each class does one thing not several things

– Loosely coupled
• Each class knows as little as possible about the classes they 

interact with

• What is good for classes is good for modules
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SML Makes Systems More Loosely 
Coupled to Soar

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

C++ Function
Calls

8.5/gSKI Interface size (# functions which break client if changed and not recompiled)  ~= 1000

SML reduces this to 2 (+ about 20 for ElementXML)

Why does this matter?
Supports a larger community building clients – may not have source available

Allows a single client to support multiple different kernel versions because data-driven

By default builds to 2 libraries with no dependencies
So less coupled to Tcl or other stuff

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML
over Socket

or
Function Call
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SML Example Packets
“Print chunk-1”

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.6.1” id=”657” >
<command name=”print”>

<arg param=”agent”>agent-1</arg>
<arg type=”string” param=”name”>chunk-1</arg>

</command>
</sml> 

“Output (O1 ^turn T1) (T1 ^heading 045 ^speed 225)”

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.6.1” id=”1763”>
<command name=”output”>

<arg param=”agent”>agent-1</arg>
<wme action=”add” att=”turn” id=”O1” tag=”7” type=”id” value=”T1”></wme>
<wme action=”add” att=”heading” id=”T1” tag=”6” type=”int” value=”045”></wme>
<wme action=”add” att=”speed” id=”T1” tag=”12” type=”int” value=”225”></wme>

</command>

</sml>



17

Maximizing XML performance
Standard Approach for passing XML

-- Always requires parsing step

Class wme {
   String id ;
   String att ;
   String value ; }

Internal
Representation
(C++/Java/...)

XML String <wme id=”O1” value=”T1”></wme>att=”turn” 

XML Parser

ElementXML {
    String tag ;
    List<String> attributes ;
    List<ElementXML> children ; }

XML Object Representation
(DOM)
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Maximizing XML performance
SML Approach – create DOM representation directly

- only convert to XML string if needed

Class wme {
   String id ;
   String att ;
   String value ; }

Internal
Representation
(C++/Java/...)

XML String

XML Parser

ElementXML {
    String tag ;
    List<String> attributes ;
    List<ElementXML> children ; }

XML Object Representation
(DOM)

XML Object Representation
(DOM)

Speed benefit ~50x if always use socket
Speed benefit ~10x if pass string directly
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Building an SML Client

• Option A: Just send XML strings to socket
– Format: 4 byte length + XML string
– Not recommended, lose embedded speed and need details on 

XML packets but an option

• Option B: Use client SML functions we provide in
– C++
– Java
– Tcl
– more…
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Creating Kernel and Agents

• Local Kernel
– Kernel* pKernel = CreateKernelInNewThread()

• Generally recommended
– Kernel* pKernel = CreateKernelInCurrentThread()

• Tcl only supports this form (so far)
• Call CheckForIncomingCommands() periodically

• Remote Kernel
– Kernel* pKernel = CreateRemoteConnection(ipAddress, port)

• Pass null for ipAddress => same machine

• Agents
– CreateAgent()
– DestroyAgent()

• Shutdown
– delete pKernel object
– disconnects
– cleans up all memory
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Local vs Remote Kernels

Client 1

Kernel

Client 2 Client 3 Client 4

CreateKernel
InNewThread()

CreateRemote
Connection()

CreateRemote
Connection()

CreateRemote
Connection()



22

Local vs Remote Kernels

CreateRemote
Connection()

CreateKernel
InNewThread()

CreateRemote
Connection()

CreateRemote
Connection()

Client 2

Kernel

Client 1 Client 3 Client 4

Change one line of code
• Internally different execution paths

– XML objects + local functions vs XML strings + sockets
• To the client, same interface and capabilities
• No special access for debugger
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Input

• Add structures to input link representation
– Identifier* pInputLink = pAgent->GetInputLink() 
– Identifier* pID = pAgent->CreateIdWME(pInputLink, "plane") ;
– StringElement* pWME1 = pAgent->CreateStringWME(pID, "type", "Boeing747") ;

Result: (I1 ^input-link I2) (I2 ^plane P1) (P1 ^type Boeing747)

• Send changes to kernel
– pAgent->Commit() ;
– Actual wmes added during next input phase

• Update or remove in future cycles
– pAgent->Update(pWME1, “Cessa”) ;

• NOTE: init-soar works and comes for free.
– Sends over current input state automatically so you can pick up reasoning
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Output
• Check for output commands (since last check)

– Based on “command” notion on output link
– E.g. (I1 ^output-link I3) (I3 ^move M1) (M1 ^speed 20)

– pAgent->GetNumberCommands() ; 
– Identifier* pCommand = pAgent->GetCommand(i) ;
– string name = pCommand->GetCommandName() ;
– string speed = pCommand->GetParameter(“Speed”) ;
– pCommand->AddStatusComplete() ;

• Same as pAgent->CreateStringWME(pCommand, “status”, “complete”) ;

• But not forced to use this model
– GetCommand() returns Identifier*.  Can access substructure directly.
– GetOutputLink() and walk output link directly.
– GetOutputLinkChange() to walk list of WMEs changed

• Call ClearOutputLinkChanges() after reading the output link
– Allows SML to only report changes to the output link.
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Running Soar

• Run
– Kernel->RunAllAgentsForever()
– Kernel->RunAllAgents(steps, stepSize)
– Agent->RunSelfForever()
– Agent->RunSelf(steps, stepSize)

• Stop
– Kernel->StopAllAgents()
– Agent->StopSelf()
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Debugging commands
• ExecuteCommandLine(commandLine)

– ExecuteCommandLine(“watch 3”) ;
– ExecuteCommandLine(“print o1”) ;
– ExecuteCommandLine(“excise –all”) ;

• Simple form returns a string
– “set-library-location”
– returns: “Current library location: e:\soarmich\soar-library”

• Alternative form returns XML
– “set-library-location”
<sml doctype="response" id="32" smlversion="1.0 soarversion="8.6.1“ack=“237">

<result>
<arg param="directory" type="string">e:\soarmich\soar-library</arg>

</result>
</sml>
– GetArgValue(“directory”)      [smlNames::kParamDirectory]

• Why not implement all as methods in the client interface?
– Just saving work
– Some clients (lots?) will want to embed command line windows
– XML all documented on Wiki (http://winter.eecs.umich.edu/soarwiki/Main_Page)
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Event Handling

• Register callback handler for an event
pAgent->RegisterForRunEvent(smlEVENT_AFTER_DECISION_CYCLE, 

MyRunEventHandler, 0) ;

• Called back when event occurs:
void MyRunEventHandler(smlRunEventId id, void* pUserData, Agent* pAgent, 

smlPhase phase) ;

• Supports all gSKI events (plus a few additions)
– Long list

• Events can be handled over remote connections the same as local ones
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RHS Functions
• Register RHS function

pKernel->AddRhsFunction("test-rhs", &MyRhsFunctionHandler, 0) ;

• Referred to via “exec” in production (just like “tcl”)
sp {apply*user*exec

(state <s> ^operator <o> ^io.output-link <ol>)
(<o> ^name move ^space <sp>)
(<sp> ^row <row> ^col <col>)

-->
(<ol> ^test (exec test-rhs | hello | <row> | world |))}

• Calls RHS function handler
std::string MyRhsFunctionHandler(smlRhsEventId id, void* pUserData, Agent* pAgent, char 

const* pFunctionName, char const* pArgument) ;

• “cmd” allows access to command line as built in command set
--> (cmd print <s>)

• Handler can be in any language (e.g. register from Java, handler in Java)
• RHS functions can be handled over remote connections the same as local ones

– If same function registered locally and remote, calls local one
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Threads

• CreateKernelInNewThread()
– Runs kernel in its own thread
– Means kernel can respond to remote commands (over socket) on its

own
– Otherwise need to call “CheckForIncomingCommands()” periodically

• Also EventThread helps client remain responsive
– Register for an event (e.g. AFTER_DECISION_CYCLE)
– Go to sleep => entire system locks up waiting for this client
– Solution is a thread which receives these events and pushes them

through client callback to get response

• Both just make it easier to build a client
– Neither thread is required – CreateClientInCurrentThread()
– For maximum performance turn them off and handle these issues 

yourself



30

SWIG and Language Support
• SWIG

– Automatic generation of Java and Tcl implementations
– Fast to create and maintain
– Custom code added to handle callbacks
– Code looks the same in each language

C++
sml::Kernel* pKernel = Kernel::CreateRemoteConnection(true, null, Kernel::GetDefaultPort()) ;

if (pKernel->HadError())
{

cout << pKernel->GetLastErrorDescription() << endl ;
return false ;

}

Java
sml.Kernel kernel = Kernel.CreateRemoteConnection(true, null, Kernel.GetDefaultPort()) ;

if (kernel.HadError())
{

System.out.println(kernel.GetLastErrorDescription());
return false ;

}
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Common Environment Control Loop

Asychronous environments
Act as soon as output is sent from an agent

Synchronous environments
Fixed amount of Soar processing before update world

while (!stopped)
• Run(1) (or Run-til-output)
• Collect-output
• Update-state-of-world
• Send-input

Assumes environment triggers run.
Assumes run(1) completes a decision
Assumes user doesn’t issue “stop-soar” (needs to pause/stop environment)
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Preferred Environment Control 
Structure

1. Register for “update world” event (e.g. AFTER_ALL_OUTPUT_PHASES)

2. Handler takes form:
• Collect-output
• Update-state-of-world
• Send-input

3. Run controls
• Kernel::RunAllAgentsForever()
• Kernel::RunAllAgents(1)

As agents run, fire event as reach end of output phases.
Allows run to come from debugger or environment or other tools.
Allows for arbitrary interruption of run commands (e.g. breakpoints/stop-soar).
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Debugger Performance Comparison

Towers of Hanoi TSI (8.5.2) Java Debugger 
(Text)

Java
Debugger
(Tree)

Watch 1
(Run 100)

1.25 secs 0.73 secs 0.75 secs

Watch 5
(Run 100)

59.68 secs 2.14 secs 1.51 secs
0.58 secs (full 
filtering)

• Within process faster than 8.5.2 (for the debugger)
• Embedding Soar in environment so remote => local

– Not measured yet, but huge speed up
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Documentation
• PDFs included in Release

– SML Quick Start Guide
– Moving from SGIO to SML
– Soar XML Interface Specification
– Intro to the Soar Debugger
– How to guide – adding an event to gSKI and SML

• Online on the Wiki
– http://winter.eecs.umich.edu/soarwiki/Main_Page

• Questions, bugs, building something cool, need help?
– soar-sml-list@umich.edu

http://winter.eecs.umich.edu/soarwiki/Main_Page
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Nuggets

• Supports multiple languages (Java, C++, Tcl currently) while 
removing Tcl dependency

• Supports uniform interface for I/O (environments) and commands 
(debuggers)

• Supports embedding kernel within debugger or environment with 
remote connections between them

• Supports multiple clients (environments, tools, debuggers etc.) 
connecting to a single kernel

• Supports dynamic connection and disconnection of tools (esp. 
debuggers) from a running kernel

• Provides a uniform, high-level, data-driven model for the entire Soar 
interface while achieving high performance

• Moves command line support out of the kernel while providing 
universal access to it from any client

• Includes a new cleaned up command line interface

• Lots of new capabilities yet in most cases the new interface is 
substantially faster than 8.5.2
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Nuggets
• Building a command line interface in a client is pretty simple

– Allows embedding console windows into environment (e.g. games)

• Readily supports other solutions
– Other debuggers (e.g. TSI-8.6)
– Other editors (edit-production is generic)

• 8.6.1 will be out by end of June
– Linux and Mac support
– Soar7 mode
– Tcl Eaters
– Java Missionaries and Cannibals
– New environment event model
– Kernel XML generation much faster
– New debugger features (fast tree view, filtering etc.)
– Lots of other bug fixes

• 8.6.1r5 Used for tutorial at the workshop w/o problems
– Tcl Eaters with Java Debugger with C++ Kernel
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Coal
• Not all commands generate fully structured XML

– Esp. print, but should do so shortly
– Still XML but not as rich as we’d like

• Threading models not completely resolved yet
– Esp. Tcl

• Lots of new code
– There will be some bugs lurking
– Not all combinations fully tested yet
– Interfaces will probably change a bit as everything settles
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